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An effect ive method for  the solution of ma themat i ca l  phys ics  p r o b l e m s  is  d i scussed  in the ex -  
ample  of heat -conduct ion p r o b l e m s .  N u m e r i c a l  computat ions a r e  c a r r i e d  out to i l lus t ra te  the 
accuracy  and convergence  of the method,  

The bas ic  idea of the method of extended domains  is ut i l ized p r i m a r i l y  in e las t i c i ty  p r o b l e m s  [1-3], a l -  
though even in that  a rea  it  has  not been developed and applied to the extent  that it should. 

The method is  based  on a s imple  phys ica l  notion; it is e x t r e m e l y  genera l  and is  well  suited to compute r  
implementa t ion .  It  can be used effect ively  for  the solution of a broad sphere  of p r o b l e m s  in ma thema t i ca l  
phys ics .  The substance  of the method is as  follows. A given domain D is i m m e r s e d  (conditionally) in a c e r -  
tain extended domain D ' ,  for  which the fundamenta l  solution of the initial  d i f ferent ia l  equation of the p rob lem 
is known. The sur face  F bounding D is t r ea t ed  in D' as  a function of d is t r ibuted sou rce s ,  the s t rength  of which 
is to be de te rmined .  If that  su r face  is  par t i t ioned  into n finite e l emen t s  and it  is a s sumed  that  the densi ty  of 
sou rces  inside each e l emen t  i s ,  say ,  un i formly  d is t r ibuted  the re ,  then by sa t is fying the boundary conditions 
a t  the midpoints  of the su r face  e l emen t s  we obtain a s y s t e m  of nondegenerate  a lgebra ic  equations in the un-  
known densi t ies .  

In the invest igat ion of nonsteady p r o b l e m s  it  is n e c e s s a r y  to introduce additional t ime quant izat ion,  
adopting a p r i o r i  a ce r ta in  dis t r ibut ion function for  the dens i t ies  of sources  in appl icat ion to each d i sc re t e  
t ime interval .  

The extended-domain  method has  two impor tan t  advantages :  1) The s y s t e m  of equations is  fo rmed  solely 
in t e r m s  of points  of the boundary sur face ;  2) for  each type of domain (plane, a x i s y m m e t r i c ,  th ree-d imens iona l )  
the a lgor i thm is genera l ,  r e g a r d l e s s  of the configurat ion of the domain or  the type of boundary conditions. 

Below, without sac r i f i c ing  genera l i ty ,  we cons ider  the p lanar  heat -conduct ion p rob l em for  an a r b i t r a r y  
an i so t rop ic  domain D bounded by a contour F. Le t  the requi red  function v(x, y ,  t) sa t i s fy  the following equa-  
tion and initial  and boundary conditions: 

Ov O~v 02v 
- ~ - = a , - ~ x ~  + a  e inD for t > 0 ,  (1) 

Oy 2 

v = ~ ( x , y )  in D for t = 0 ,  
(2) 

[ av ~ cos(h,v)]= v - -  R (x, y) ai ~ cos (h, x) + a~ Oil 

= f ( x , y , t )  on F for t > O .  (3) 

I t  is a s sumed  he re  that the coordinate  axes  coincide with the d i rec t ions  of the pr incipal  an i so t ropy  axes ,  a s and 
a 2 a re  cons tan ts ,  E,  q~, and f a r e  given funct ions,  and h is the no rma l  to the contour F. 

We take as  the extended domain D' the unbounded plane,  for  which the known fundamental  solution 

1 [ (x_V)2  (y__y,)2 ] 
G(x, y, t) = 4~(ata2)l/z(t .c ) e x p  4ai(t--T) 4a2(t--  x) 

is  in t e rp re ted  as the t e m p e r a t u r e  induced in the unbounded plane by the instantaneous r e l e a s e  of hea t  by a 
point source  of unit s t rength  a t  a point (x' y ' )  of the plane D' at t ime  t = T.* 

*In a number  of s i tuat ions it m a y  be p rac t i ca l  to use  other  extended domains  D' (for example ,  a halfplane,  
s t r i p ,  etc.) and fundamental  solut ions in the f o r m  of Green (for R = 0), Neumann (R --- oo), or  Robin (0 < R < ~ 
functions.  
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We part i t ion the contour F into n sufficiently small  rec t i l inear  segments and assume that qjp is the 
s trength of sources  dis t r ibuted uniformly on each j - th  segment  and acting continuously for a t ime interval  
[tp-l,  tp] (j = 1, n; p = 1, k). Then the t empera tu re  of an a r b i t r a r y  point of the domain D ~ D' at t ime t = t k, 
sat isfying Eq. (1) and the initial condition (2), is de termined  f rom the express ion  

2q 
v (x, y, t~) = Vo (x, y, t~) + ~ q.fpljp (x, y, th), (4) 

p = l  ] ~ 1  

in which 

l ip= 4~t_(alaz)l/a t ---------~ 4aiaz ( t - -  ~) 
tp_ 1 0 

D 

lj = l(x~ - -  xj_~)~ + (Ys - -  YJ_,)~I ,i2; 

x '  = xj_,  + %e; y '  = yj_~ + [~:e; 

~,~ = (x~--  xs_Otb; f~j = ( ~ - -  ~,_,)lls. 

It is convenient f rom the standpoint of diminishing the number  of equations and increas ing  the accuracy  
to choose the segment  lengths lj depending on the smoothness  of the contour and the boundary conditions, 
namely shor t e r  lengths where  the curvature  is g rea te r  or  where  the boundary functions are  joined or  suffer  
discontinuit ies.  

Af ter  integration the function Ijp and its der ivat ives  with r e spec t  to the coordinates  assume the form 

2 2 

[JP = 4~mj@i'l L[ ~ "sl"~r ~'lpllr("r's) ] / '  (5)  
i 

s=l r ~ l  

---- - -  (-- I) s [~jF}; ) + 6cr (-- l) r Ei (--v~s) , (6) 
Ox 4~mjai  s = l  r = l  

2 2 

<,.,,, _ ,_ r _=<,> ,>,,:<., ], 
09 4ztmja I Z ( -  1)' [--%..1. + (-- (-- .s) 

s ~  l r =  l 

m] -~ fJz's + 62~2"i' fiz ~ a21a t 
is the anisotropy p a r a m e t e r ;  

' is = 6 [ %  (y  - -  Y j _ O  - -  I+~ (x  - -  x j _ O ] ;  

~4i = I~,+ (9 - -  Y i - t )  - l -  5aa~ (x  - -  x j _ i ) ;  +j2 = ~4i - -  mflj; 
~tz s 

bl, t s 

~J~ ( t~--tv_l ) t/2. 
~l~ = 28 [rosa i (t k -  tp_t)] 1/2 ; ~ = ~ ts,-- tp ' 

�9 (u) = 2AfTr ~exp (-u2)du is the probability integral; 
0 

ltt(r,s) ]p -- exp (--~i~Fr~) - -  Ei (--  v ~d; 
I%s 

Ei(--v~s ) = i  exp(--u u) du 
2 

vrs  
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is the integral  exponential  function; and 

v,~ = 11%1 (1 + Z~D ~/2. 
To simplify the calculations tt Is useful  to approximate  the probabi l i ty  integral ,  for  example in the fo rm 

[~- - -~ [exp( - -c t ,~ )+exp( - -c~) ]  for [I,tl <2.2 ,  
O(F) 

[sgnlt for It11>~2,2, 

where  c~ = O.O6OO25 and c2 = 0,588787645. The e r r o r  of approximation in this case is not g r ea t e r  than 0.25%. 

As a resu l t ,  the function Fj(~) can be calculated according to the equation 

Ft.~) m = ~ ( ~  1)r[nsgnArs@(LssArs) ~LSs sgn B~,Q(~#,, B~,)], 

Q (~q,, B,s) -- 1 exp [-- Br ~s (ct + ~,~s)] + 1 2 2 . - -  - - e x p  [-- Brs (Ca + ~/s)], 
c~ + ~S2s c~ + ZS~ 

Ars = IxrsandB~s = 0 for lilts [ ~ 2.2; 

Atg = 2.2sgn~q~, Az, = ~hs, Bi, =ttts and 

B2,= 2.2sgnla2~ for 1~q,1<2,2<1t%1; 

Ars=OandBrs=~s f~  [lars]~2,2 (S, r =  1,2). 

If we requ i re  that the boundary conditions (3) be sat isf ied success ive ly  at  t imes  t = t m (m = 1, k) at the 
midpoints of the contour F: 

1 1 
x01 -~ (xi_l + x0, Yo~ = ~- (Yi-i + Y0, 

we obtain the r e c u r s ive  sys tem of equations 

o r ,  in ma t r ix  f o rm ,  

c {~) qp qJp = ,lm q.im = Dim--  ~ c tm)~ (i 1, n) 
]~ i  p=l  1=1 

m--1 

[Clm 'n)] {qm} = {Din} - -  ~ [c~ =)] {qp}, 
p= l  

where  

c!m'),m = lip (Xo~, Yof, 6.) "4- Rat /(~i OlJVox - -  6=al OljvOy '1.], 

D,m= f(xo,, Yo,, tm)'--Vo(Xo,, Yo,, tm)-T- Ra, (~, Ovo __62~ ' Ovo 
\ Ox Oy ] 

The upper signs cor respond to the outer  contour of the domain D, and the lower signs to the inner contour,  in 
the clockwise direct ion.  The diagonal e lements  of the pr incipal  ma t r ix ,  being in fact  the maximum in the row,  
a re  computed according to the express ion  

d~, _ t, [ r ~ 3  ~:) zi ( -  ~;2)]+ 
,ira 4n6at t~ "-2-' 

where  

46 [miat (tin - -  tm--l)] 1/2 

The number  of equations of the sys tem can be reduced if the problem has a plane of symmet ry .  When a uniform 
t ime step is used up to the t imc t k, it  is sufficient to compute the m a t r i c e s  [cl~m)](m = 1 ~ ,  since [ct 0] = 
[c~2)] = . . .  = [c~)] ,  [cl (2)] = [c~ 3)] = . . .  = [ c~) i ] ,  etc.  Then the solution can be r ep resen ted  in the fo rm 

{qm} = [c?~] -~ {Din}-- ~ [c~ m-p+~ {%} - 
p~l  
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In the l imiting s t eady-s ta te  si tuation where  the source  function is 

1 
G (x, v) 

2n6at 
In [5a(x-  x') z q- (y -- y,)e], 

the required  solution is r ep resen ted  by the sum 

v (x ,  y )  = 2 q~l~ (x, y), 

where  

{q} = Ic]-' {D}; 
2 

l Z (--1)s~ss ( lnp's+Ljsarcig 1 - - 1 ) ;  II(x' Y)-- 2r~mj6cq ~1 XJs 

9js = l[j, I(l § ~:~ ),/2; Di = f (Xoi ' YOi); 

[ Ots(Xo+, yoO ,2~ OIs(xo, yod ]. 
cu = Is (Xoi, Yoi) "+" Ra, ~i Ox Oy ' 

2 

O l s  1 y__~(_l)S @%lnpjs_13]arctg 1 ).  
Ox 2amsa~ s=, ~'Js 

2 

OIj=_~y 2~m.jatl- Z ( _  1)s (6_t,j  In pjs_~_cc/arctg__~l ) ; s = l  ~qs ] 

and the quanti t ies  }is and his a re  the same as in express ions  (5) and (6). The diagonal e lements  of the ma t r ix  
[c] a re  computed according to the equation 

cu -- 1 - -  In 
2~at6 

) R ( i = l , n ) .  

To i l lus t ra te  the convergence and accuracy  of the given a lgor i thms we have selected to examples for  im-  
plementat ion on an M-222 computer .  

Table  1 summar i ze s  the resu l t s  of computing the function v(x, y) for  the well-known s teady-s ta te  problem 
in which the domain D is bounded by the equi la tera l  t r iangle with unit side and at the boundary the functions 
R(x,  y) = 0 and f = x 2 + y2 a re  given. This  type of problem occurs  in a number  of applications of mathemat ica l  
physics .  

The third and fourth columns of the table give the values of the function for  part i t ions of the sides of-the 
t r iangle into, respec t ive ly ,  10 and 20 equal segments  of length lj = 0.1 and lj = 0.05, and the fifth column co r -  
responds to the values of the functions for  a nonuniform step: lj = 0.025 over  one fourth the length f rom the 
ver tex  of the t r iangle  and lj = 0.075 over  the remaining length,  with p rese rva t ion  of the number  of segments  
n = 20. F o r  compar ison the las t  column gives the exact  values of the function. The origin of the coordinate 
sys tem Oxywas placed at the midpoint of the base of the t r iangle ,  with the axis Oxrlmnil2g along the base and 
the axis Oy along the altitude. 

In the implementat ion of nonsteady problems  with the requi red  accuracy,  the degree  of t ime quantization 
depends mainly on the nature of the t ime var ia t ion of the boundary conditions. This  fact  is i l lus t ra ted  below in 
a tes t  problem. 

Table  2 l ists  the e r r o r s  ~0) in the calculation of the t empera tu re  at points of an isotropic  (a I = a 2 = a} ha l f -  
plane x >- 0, on the surface  of which the t empera tu re  is given by one of the functions: fl = const; f2 = t; f3 = t2. 
The t empera tu re  is es t imated  for  four values of the Four i e r  p a r a m e t e r  (Fo = at /x  2) and two t ime-quant izat ion 
schemes.  

It is impor tant  to note that the computing t ime can be shortened while simultaneously attaining a h igher  
accuracy  by applying a ce r ta in  predic t ion p rocedure  (formula) to the resul ts  of a few successive solutions with 
an increas ing  number  of steps.  
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TABLE 1. Comparison of Computed Values of Steady-State Function 
v(  x,  y) with Exact Values for Three  Quantizations of the Boundary of 
a Tr iangular  Domain 

0 
0 
0 
0 
0 
0,3 

0,05 
0,1 

1/~/6 
0,6 
0,8 

t/-~76 

n ~ l  0 

l j=O, 1 

0,041093 
0,077919 
0,194634 
0,409435 
0,645901 
0,194558 

l ifO, 05 

0,040962 
0,077776 
0,194467 
0,409076 
0,645376 
0,194464 

n ~ 2 0  

variable step 

0,040950 
O, 077759 
0,194446 
0,409020 
0,644156 
0,194461 

Exact solution 

0,040945 
0,077757 
o, 194444 
0,409030 
0,644026 
o, 194444 

TABLE 2. E r r o r s  (~) for  Three  Laws of Heating 
of a Halfplane and Two Time-Quant izat ion Schemes 

h 
consf t t 2 Fo 

10 
20 
I0 
20 
10 
20 
I0 
20 

--2,20 
--1,00 
--1,58 
--0,72 
--0,78 
--0,35 
--0,57 
--0,25 

1,77 
0,92 
1,03 
0,49 
0,57 
0,22 
0,45 
0,18 

3,54 
1,75 
2,84 
1,12 
1,91 
0,75 
1,15 
0,64 

1,1 

2,2 

10 

20 

D 
F 
D' 
v 
X, y, X ~, yT 
t, v,  

f 
R 
h 

6/1,  ~/2 

l 
q 
n 

k 
xj, yj, xi, Yi 

1 ,  

2. 

3. 

N O T A T I O N  

is the given domain; 
is the boundary of given domain; 
is the extended domain; 
is the unknown function; 
a re  the coordinates on the plane; 
is the t ime; 
is the initial condition; 
is the boundary condition; 
is the thermal  res i s tance ;  
is the normal  to domain boundary; 
a re  the thermal  diffusivities along principal  axes of anisotropy;  
is the length of contour segment;  
is the source strength;  
is the number  of contour segments ;  
is the number  of t ime steps;  
a re  the coordinates  of contour points. 
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